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Abstract. Diffuse neutron scattering measurements were carried out in a FePd single crystal at 1020 K
in the (100) and (110) reciprocal planes. The diffuse intensity is nearly symmetric, showing that the
static displacements are small. A set of displacement and short-range order parameters have been fitted
to the measured data using a least square procedure. The short-range order parameters have been used
in conjunction with an inverse cluster variation method to deduce the pair interaction energies. A strong
attractive interaction between second nearest-neighbour like atoms is found.

PACS. 61.12.Ex Neutron scattering – 64.60.Cn Order-disorder transformations – 61.66.Dk Alloys

1 Introduction

In solid solutions, chemical short-range order (SRO) is a
direct manifestation of effective interaction energies that,
in many instances, determine the thermodynamic behav-
ior of the system. Thus, measurements of diffuse scatter-
ing aimed at characterizing chemical SRO have been the
subject of numerous studies and reports in the scientific
literature [1–13]. The primary motivation of such studies
is to gain understanding of the local atomic arrangements
and their role on the magnetic, mechanical and thermo-
dynamic properties of the alloy.

Measurement of diffuse scattering is the method of
choice to determine the local atomic arrangement in al-
loys. Over the last 50 years, experimental techniques
for diffuse scattering measurements have evolved signif-
icantly and, at present, they are carried out with a high
degree of accuracy in single crystals at high and low
temperature [1–13]. The methodology to determine the
Warren-Cowley SRO parameters from the experimental
diffuse intensity is also well established and routinely
used to calculate the pair correlation functions and ef-
fective pair interactions. Specifically, the theoretical de-
scription of the pair correlations is carried out using
standard statistical methods, such as cluster variation
method (CVM) [14–16] or Monte Carlo simulations [17],
and typically rely on model Hamiltonians that include
interaction energies for a large set of clusters [18]. It
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should be noted that the analysis of the diffuse scat-
tering by the CVM, although computationally more de-
manding, offers a significant improvement over the use of
the Bragg-Williams approximation [19], as pioneered by
Cowley [20], Krivoglaz [21], and Clapp and Moss [22].

The most commonly used approach to compute the
effective pair interactions is the real-space inverse CVM
introduced by Gratias and Cénédèse [23]. In this method,
the effective pair interactions are obtained by fitting the
Warren-Cowley SRO parameters in real space which, in
turn, are related by a Fourier transform to the experi-
mentally determined SRO intensity.

While the inverse CVM method is relatively straight-
forward to implement, it becomes computationally very
intensive for large cluster approximations. Thus, the fit-
ting is typically done for a relatively small number of SRO
parameters which, in turn, results in interactions that may
be unrealistically short-range for the alloy under inves-
tigation. As described in Section 4, this computational
limitation of the inverse CVM method can be effectively
overcome by using a CVM approximation that combines a
set of computationally manageable compact clusters plus
pairs (i.e. two-point clusters) that extend to the desired
interaction range. An alternative approach that has been
used consists in fitting the pair correlations by an inverse
Monte Carlo method in real space, in which case longer in-
teraction ranges may be included without any significant
computational overhead [5,10].

In this paper, we describe high-temperature neu-
tron diffuse scattering measurements in FePd. Around
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the 50/50 stoichiometry, FePd orders in the L10 struc-
ture, made of alternating pure iron and pure palladium
(001) planes [24]. This very anisotropic chemical order
is accompanied by a strong magnetic anisotropy and a
tetragonality c/a ≈ 0.97. The pronounced anisotropic
properties of FePd are at the core of the present renewed
interest in this system. In thin films, L10 FePd alloys dis-
play, in addition to a high magnetic anisotropy, a magne-
tization that is perpendicular to the film surface [25,26],
thus making such films good candidates for magneto-
optical-storage devices. Furthermore, the combination of
the cubic to tetragonal symmetry change at the order-
disorder transition and the rapid ordering kinetics of this
phase transformation make FePd alloys high temperature
shape memory materials [27] with potential applications
as actuators and coupling devices. Consequently, an ad-
ditional motivation of the current study was to provide a
detailed characterization of the chemical order and of the
underlying interaction energies in a system with poten-
tially important engineering applications.

This paper is organised as follows: we present a sum-
mary of the experimental procedure together with the
method used to obtain the elastic diffuse intensity (de-
convolution process and corrections) in Section 2. In Sec-
tion 3, a set of Warren-Cowley SRO parameters is ob-
tained from the corrected data. These SRO parameters
are used in Section 4 to calculate the pair interaction en-
ergies using an inverse CVM method. Concluding remarks
are given in Section 5.

2 Diffuse neutron scattering

The measurements of diffuse scattering were carried out
within the face centered cubic (fcc) temperature range
of FePd. To avoid the critical effects near to the order-
disorder temperature (Tc = 920 K), we performed the
measurements at 1020 K using a parallelepiped single crys-
tal, lent to us by Professor Tanaka (Kyoto, Japan) [27]; the
same sample was previously used to measure the normal
modes of vibration by inelastic neutron scattering [28].

We carried out the measurements on the G4-4 two-
axis spectrometer in Léon Brillouin Laboratory (CEA-
CNRS, Saclay, France) with the wavelength λ = 0.28 nm.
A high temperature furnace is located at the center of
a 80 cm diameter vacuum vessel (vacuum better than
10−5 torr). The detection device is a bank of 64 He3 de-
tectors: 48 large detectors (50 mm in diameter) placed
every 2.5◦ and 16 smaller detectors (10 mm in diameter)
placed every 0.625◦ at small angles. The accessible diffrac-
tion vectors range is between 0.2 and 2.8 reciprocal lattice
units (RLU)(1RLU=2π/a with a = 0.388 nm for the fcc
FePd). The (100) and (110) planes are scanned by a rota-
tion of the sample with a step ∆ω = 4◦. This leads to a
sampling mesh of about 3000 measurement points on the
two scattering planes.

At high temperature, an energy analysis is necessary
to extract the elastic contribution out of the measured in-
tensity. It was performed using a time-of-flight setup. The
elastic contribution was obtained by the deconvolution of

the time-of-flight spectra and the impulse response of the
spectrometer [29]. Due to the long wavelength used, the
dominant inelastic process is the phonon annihilation lo-
cated on the high-energy side of the spectrum, except in
the close vicinity of the Bragg peaks where many points
had to be eliminated due to a strong quasi-elastic scat-
tering which arises mainly from the annihilation of low-
frequency acoustical phonons.

Standard corrections were applied to the data. The
absorption coefficients [30] and multiple scattering correc-
tions [31] were evaluated using a Monte Carlo integration
method. The dynamic Debye-Waller factor was calculated
from the inelastic neutron scattering results [28] using the
Krivoglaz method [21]. The possible deviation of the total
Debye-Waller factor, due to static contribution and quasi-
harmonic deviations [32], were adjusted from the data.
The instrumental background has been measured with the
empty furnace. We eliminated all the points where the fur-
nace signal is large (powder rings of the resistor) inducing
a large error bar (white circles in Figs. 1). In order to cali-
brate the efficiency of the detectors, we measured at room
temperature a vanadium probe with the same shape, di-
mensions, and position in the furnace as the sample. The
data were finally normalised to the number of atoms in
the beam. Due to the low contrast between the scattering
lengths of Fe and Pd (∆b = 3.54 fm), the whole measure-
ments lasted four weeks to get a good signal/noise ratio.

3 Short-range order parameters

Figure 1 displays the corrected intensities in the two re-
ciprocal planes. The diffuse intensity is mainly located
around 100 and equivalent points. The static displace-
ments give rise to a weak asymmetry of the diffuse peaks.
An increase in the diffuse intensity can be observed close
to the origin, due to the paramagnetic contribution of the
Fe atom moments. The corresponding points have been
eliminated in the SRO analysis.

The corrected intensity at the reciprocal space point
k = 2π

a (h1, h2, h3) is given by:

Icorr(k) = α(k) +
3∑

i=1

hiQi(k) + Iinc. (1)

α(k) is the SRO contribution. The Qi(k)’s are related to
the Fourier transform of the static atomic displacements.
Iinc is the incoherent scattering cross section per atom in
Laue units (1LU= π(bFe − bPd)2 = 39.6 × 10−30 m2, with
bFe and bPd the coherent scattering lengths for Fe and Pd,
respectively): Iinc = 0.632LU in FePd. Equation (1) is
the development up to the first order in the displacement
up at lattice site Rp = a

2 (l, m, n), where p stands for the
integers (l, m, n), also noted (lmn). The SRO contribution
to the diffuse intensity is given by the Fourier transform
of the Warren-Cowley SRO parameters αp [20]:

α(k) =
∑

p

αp cos(k ·Rp) (2)
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Fig. 1. Corrected experimental intensities and reconstructed
intensities (down left) in the (100) (a) and (110) (b) reciprocal
planes. The typical error bar is about 0.4LU.

The Warren-Cowley SRO parameters are related to
the correlation functions by:

αp =
〈σ0σp〉 − 〈σ2

0〉
1 − 〈σ0〉2 (3)

where σ0 and σp are the occupation operators at the ori-
gin and site p, respectively. These occupation operators
are equal to 1 or −1 when the lattice site is occupied by
Fe or Pd atoms, respectively. The brackets stand for con-
figurational averages.

In equation (2), α0 is theoretically equal to 1. Due to
the uncertainty in the measured diffuse intensity near the
Bragg peaks, we have fixed this value assuming: α(0) = 1.
The sensitivity of the results to this assumption is very
small.

The quantities Q = [Q1, Q2, Q3] in equation (1) are
given by:

Q(k) =
∑

p

γp sin(k · Rp). (4)

Fig. 2. Sensitivity of the first four SRO parameters, the con-
stant contribution α0I = α0 + Iinc and the squared residual
error χ2 to the number of the SRO parameter in the fit.

The first-order displacement parameters γp are defined by

γp = −2π

a

∑

i,j

bibj

FLaue
ρ2,p(ij)〈∆up

ij〉. (5)

〈∆up
ij〉 is the average relative displacement between

atoms of type i and j (i.e. Fe or Pd) separated by Rp.
ρ2,p(ij) is the probability of finding atoms i and j at a dis-
tance Rp, equal to (1+αp)/4 and (1−αp)/4 for like atom
(FeFe or PdPd) and un-like atom (FePd) pairs respec-
tively. FLaue is the usual normalization factor: FLaue =
(bFe − bPd)2/4 in equiatomic FePd.

We have adjusted the Warren-Cowley SRO parameters
fitting the corrected data by a least square procedure with
a weight inversely proportional to the squared experimen-
tal error ∆I2. We have minimized the squared residual
error:

χ2 =
∑ (Im − Ic)2

Nfree∆I2
. (6)

Im and Ic are the measured and calculated intensities re-
spectively. Nfree = Npoints − Nvariables is the number of
degrees of freedom of the fit. Npoints and Nvariables are the
number of experimental points and of variables in the fit.

We have verified the stability of the fit by varying the
number of shells for the SRO parameters up to 18, and
those for the displacements up to 16. The sensitivity of the
results to the number of SRO parameters is shown in Fig-
ure 2 for the four first SRO parameters. Above 14 SRO pa-
rameters and 6 displacement parameters, the residual er-
ror does not vary significantly and all calculated intensities
are stable. In the following, we discuss the results obtained
with 14 shells for the SRO parameters and 6 shells for
the displacement parameters. The constant contribution
to the cross section, α0I , is the sum of the α0 = 1 term and
the sample incoherent contribution. Its expected value is
thus 1.63(18)LU. We obtained 1.76(2)LU, which is slightly
smaller than the expected value but remains within the
error bar.
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Table 1. Displacement parameters deduced from the adjustment of the experimental data.

i lmn γix ∆γix γiy ∆γiy γiz ∆γiz

1 110 –0.0459 0.0023 –0.0459 0.0023
2 200 0.0449 0.0058
3 211 –0.0007 0.0018 –0.0063 0.0013 –0.0063 0.0013
4 220 0.0059 0.0027 0.0059 0.0027
5 310 0.0021 0.0020 0.0042 0.0022
6 222 –0.0057 0.0020 –0.0057 0.0020 –0.0057 0.0020

Table 2. Warren-Cowley SRO parameters and the deduced pair interaction energies (in meV) with the corresponding error
bars.

shell (i) lmn 2Rlmn/a αlmn ∆αlmn Vlmn ∆Vlmn

1 110 1.141 0.0019 0.0037 –0.43 0.33
2 200 2.000 0.1399 0.0056 –11.76 1.11
3 211 2.449 –0.0079 0.0022 0.47 0.20
4 220 2.828 0.0379 0.0030 0.85 0.88
5 310 3.162 –0.0225 0.0023 1.97 0.20
6 222 3.464 0.0295 0.0030 –1.54 0.63
7 321 3.741 –0.0127 0.0016 1.11 0.14
8 400 4.000 0.0244 0.0045 –2.14 0.40
9 330 4.242 –0.0030 0.0027 0.26 0.23
10 411 4.242 –0.0135 0.0019 1.18 0.16
11 420 4.472 0.0135 0.0022 –1.18 0.19
12 332 4.690 –0.0081 0.0019 0.71 0.16
13 422 4.898 0.0138 0.0018 –1.21 0.16
14 431 5.099 –0.0096 0.0013 0.84 0.11

Fig. 3. Variation of the Warren-Cowley SRO parameters with
the distance in FePd at 1020K. The labels give the atom po-
sitions in a/2 units. In insert: the L10 ordered phase with the
different atomic occupations (•: Fe and o: Pd). The positions
always occupied by Fe are framed.

The values of γp and αp are given in Tables 1 and 2
respectively. The αp are plotted in Figure 3. The largest
SRO parameter is α200, showing a strong attraction be-
tween second nearest-neighbour like atoms. The signs of
the SRO parameters can be related to the nature of pairs
in the L10 ordered structure. Neglecting the small tetrag-
onality of the L10 structure and indexing the points in
the fcc lattice, we get clearly positive values for like atom

pairs in L10 (αl,m,n with l, m and n all even) and small
values for pairs that are mixed (like and un-like atoms) in
L10 (αl,m,n with two odds and one even number among
l, m and n ), as shown in the insert of Figure 3.

Figure 1 compares the diffuse intensities, reconstructed
using equation (1), to the experimental intensities. The
results of the adjustment are in good agreement with the
experimental data. The diffuse intensity is nearly sym-
metrical (small displacement contribution) in spite of the
large size difference between Fe and Pd atoms. The diffuse
intensity is mostly concentrated near 100 and equivalent
points, i.e. the positions of the superstructure peaks in
the long-range ordered L10 structure. It is not always the
case: in the Pt-V and Ni-V systems the SRO diffuse in-
tensity above Tc and the long-range order peaks below Tc

are differently located [4,9].

4 Effective pair interaction energies

Using the Generalised Perturbation Method, Gautier,
Ducastelle and co-workers [33,34] have shown that the to-
tal energy of the alloy formation can be written as the
sum of a non-local energy term, associated with the ran-
dom alloy, plus a local ordering contribution that can be
approximated as a sum of concentration dependent many-
body contributions. Bieber and Gautier [35] have shown
that in the transition metal alloys the predominant terms
of the latter expansion are the pair interaction terms.
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Fig. 4. Pair interaction energies in FePd at 1020 K. The labels
give the atom positions in a/2 units.

In order to extract the pair interactions from the ex-
perimental values of the Warren-Cowley SRO parameters,
we consider an Ising Hamiltonian which contains effective
pair interactions:

H =
1
2

∑

p,p′
V c
p,p′ σpσp′ , (7)

where σp is the occupation operator on the site Rp de-
fined in equation (3) and V c

p,p′ is the effective chemical
interaction between atoms at sites Rp and Rp′ .

In the Fe–Al system, that is magnetically very sim-
ilar to the Fe–Pd system, some of us have shown [1,2]
that the interplay between chemical and magnetic SRO
is negligible above T/TCurie = 1.2. In FePd, TCurie =
760 K. The measurement temperature is thus high enough
(T/TCurie = 1.34) to neglect the magnetic SRO.

We have calculated the effective pair interaction en-
ergies from the Warren-Cowley SRO parameters us-
ing the inverse CVM method proposed by Gratias and
Cénédèse [23]. The method consists in minimizing a free
energy functional where the entropy is a linear combi-
nation of entropies of finite clusters included in a given
basic cluster. According to an optimized procedure for
selecting the basic cluster [36], a very accurate approxi-
mation for the fcc lattice consists in using two maximum
clusters, the face centered cube and the 13-points cubo-
octahedron [37]. However, this cluster combination allows
the calculation of only the first four and the sixth effective
pair interactions. Therefore we have used a CVM approxi-
mation that includes, in addition to the face centered cube
and the 13-points cubo-octahedron clusters, fifth neigh-
bour pair and all other pairs from the 7th up to the 14th
neighbours.

The calculated pair interactions are given in Table 2
and plotted in Figure 4. We note that despite the high
value of the transition temperature (920 K), the first pair
interaction energy is almost zero. The stability of the
L10 structure is mainly due to the predominant second
pair interaction and the oscillatory behavior of the Vlmn:
when only like atom pairs are present in the L10 phase,

Vlmn < 0, whereas when both like and un-like atom pairs
are present in the L10 phase, Vlmn > 0. The predominance
of the second pair interaction has been also recently ob-
served in Fe–Pt system [38].

The pair interaction energies have been used to cal-
culate the order-disorder transition temperature in FePd
by a Monte-Carlo simulation of the disordering process
of the ordered state. The model used has been described
in details in previous papers [39–41] and the detailed re-
sults will be published in a forthcoming paper [42]. The
obtained order-disorder transition temperature compares
well with the expected value.

5 Conclusion

Atomic pair correlation functions have been measured in
a FePd single crystal by diffuse neutron scattering and
have been used to deduce the pair interaction energies.
In spite of the atomic size difference between Fe and Pd
and the tetragonality of the L10 ordered structure, the
local lattice distortions are small. The diffuse intensity
is nearly symmetric and shows the signature of a highly
stable L10 phase mainly due to predominant second pair
interaction energy V200 and alternating behavior of Vlmn

for shells containing like atom (l, m and n all even) and
un-like atom pairs (2 odds and one even number among
l, m and n) in the L10 ordered structure.

Finally, we point out that our results show the effec-
tive pair interaction range in FePd extending over many
atomic shells and, thus, we offer a word of caution regard-
ing the adequacy of previous descriptions of the Fe-Pd
system using only nearest-neighbour pair interaction [43].
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a collaborative program 99 MDU 449 between the Univer-
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